Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38665077

RESUMEN

Objective: Enterotypes (ETs) are the clustering of gut microbial community structures, which could serve as indicators of growth performance and carcass traits. However, ETs have been sparsely investigated in waterfowl. The objective of this study was to identify the ileal ETs and explore the correlation of the ETs with growth performance and carcass traits in Muscovy ducks. Methods: A total of 200 Muscovy ducks were randomly selected from a population of 5,000 ducks at 70-day old, weighed and slaughtered. The growth performance and carcass traits, including body weight, dressed weight and evidenced weight, dressed percentage, percentage of apparent yield, breast muscle weight, leg muscle weight, percentage of leg muscle and percentage of breast muscle, were determined. The contents of ileum were collected for the isolation of DNA and 16S rRNA gene sequencing. The ETs were identified based on the 16S rRNA gene sequencing data and the correlation of the ETs with growth performance and carcass traits was performed by Spearman correlation analysis. Results: Three ETs (ET1, ET2, and ET3) were observed in the ileal microbiota of Muscovy ducks with significant differences in number of features and α-diversity among these ETs (P < 0.05). Streptococcus, Candida Arthritis, and Bacteroidetes were the presentative genus in ET1 to ET3, respectively. Correlation analysis revealed that Lactococcus and Bradyrhizobium were significantly correlated with percentage of eviscerated yield and leg muscle weight (P < 0.05) while ETs were found to have a close association with percentage of eviscerated yield, leg muscle weight, and percentage of leg muscle in Muscovy ducks. However, the growth performance of ducks with different ETs did not show significant difference (P > 0.05). Lactococcus were found to be significantly correlated with leg muscle weight, dressed weight, and percentage of eviscerated yield. Conclusion: Our findings revealed a substantial variation in carcass traits associated with enterotypes in Muscovy ducks. It is implied that ETs might have the potential to serve as a valuable biomarker for assessing duck carcass traits. It would provide novel insights into the interaction of gut microbiota with growth performance and carcass traits of ducks.

2.
Animals (Basel) ; 14(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473053

RESUMEN

This research study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) on growth performance, oxidation resistance, immunity, and cecal microbiota in broilers. This work classed three hundred and sixty 1-day-old male broilers into three groups randomly, including a control group (CON, basal diet) and antibiotic (ANT, 75 mg kg-1 chlortetracycline added into basal diet) and probiotic groups (LP, 5 × 108 CFU kg-1Lactiplantibacillus plantarum HJLP-1 contained within basal diet). Animals were then fed for 42 days, and each group comprised eight replicates with 15 broilers. Compared with CON, L. plantarum supplementation significantly improved the average daily weight gain (AWDG) (p < 0.05) while reducing the feed-gain ratio over the entire supplemental period (p < 0.05). Birds fed L. plantarum had markedly lower serum ammonia and xanthine oxidase levels (p < 0.05) than those in the ANT and CON groups. Significant improvements (p < 0.05) in superoxide dismutase, catalase, and serum IgM and IgY contents in broilers fed L. plantarum were also observed when compared with those in the CON and ANT groups. Both L. plantarum and antibiotics decreased pro-inflammatory factor IL-1ß levels significantly (p < 0.05), while only L. plantarum promoted anti-inflammatory factor IL-10 levels in the serum (p < 0.05) compared with CON. L. plantarum (p < 0.05) increased acetic acid and butyric acid concentrations in cecal contents when compared to those in CON and ANT. Among the differences revealed via 16S rRNA analysis, L. plantarum markedly improved the community richness of the cecal microbiota. At the genus level, the butyric acid-producing bacteria Ruminococcus and Lachnospiraceae were found in higher relative abundance in samples of L. plantarum-treated birds. In conclusion, dietary L. plantarum supplementation promoted the growth and health of broilers, likely by inducing a shift in broiler gut microbiota toward short-chain fatty acid (SCFA)-producing bacteria. Therefore, L. plantarum has potential as an alternative to antibiotics in poultry breeding.

3.
Front Vet Sci ; 11: 1346922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38528870

RESUMEN

Introduction: This trial was conducted to compare the effect of diets supplemented with plant essential oil (PEO) and coated plant essential oil (CEO) on growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Methods: A total of 360 21-day-old weaned piglets were randomly allocated into three groups, namely, CON, PEO, and CEO (basal diets supplemented with 0, 500 mg/kg PEO, and 500 mg/kg CEO, respectively) for a 4-week feeding trial. Results and discussion: The results showed that dietary supplementation with CEO improved the average final weight and average daily gain, decreased the diarrhea rate, increased antioxidant enzyme activities, enhanced immunoglobulin concentrations, and decreased concentrations of pro-inflammatory cytokines in the serum of weaned piglets (p < 0.05). In addition, CEO addition increased the fecal concentrations of propionic acid and isovaleric acid of piglets (p < 0.05). Spearman correlation analysis showed that fecal microorganisms at the genus level were closely correlated with the volatile fatty acid concentrations. The present study indicated that PEO and CEO could improve growth performance, enhance immunity, and increase antioxidant capacity by modulating the microbial flora in weaned piglets. Moreover, CEO addition seemed to offer more positive results than of PEO addition.

4.
Poult Sci ; 103(4): 103483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354474

RESUMEN

Salmonella infection is a major concern in poultry production which poses potential risks to food safety. Our previous study confirmed that Lactiplantibacillus plantarum (LP) postbiotic exhibited a strong antibacterial capacity on Salmonella in vitro. This study aimed to investigate the beneficial effects and underlying mechanism of LP postbiotic on Salmonella-challenged broilers. A total of 240 one-day-old male yellow-feathered broilers were pretreated with 0.8% deMan Rogosa Sharpe (MRS) medium or 0.8% LP postbiotic (LP cell-free culture supernatant, LPC) in drinking water for 28 d, and then challenged with 1×109 CFU Salmonella enterica serovar Enteritidis (SE). Birds were sacrificed 3 d postinfection. Results showed that LPC maintained the growth performance by increasing body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) in broilers under SE challenge. LPC significantly attenuated SE-induced intestinal mucosal damage. Specifically, it decreased the intestinal injury score, increased villus length and villus/crypt, regulated the expression of intestinal injury-related genes (Villin, matrix metallopeptidase 3 [MMP3], intestinal fatty acid-binding protein [I-FABP]), and enhanced tight junctions (zona occludens-1 [ZO-1] and Claudin-1). SE infection caused a dramatic inflammatory response, as indicated by the up-regulated concentrations of interleukin (IL)-1ß, IL-6, TNF-α, and the downregulation of IL-10, while LPC pretreatment markedly reversed this trend. We then found that LPC inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by decreasing the gene expression of Caspase-1, IL-lß, and IL-18. Furthermore, LPC suppressed NLRP3 inflammasome activation by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway (the reduced levels of toll-like receptor 4 [TLR4], myeloid differentiation factor 88 [MyD88], and NF-κB). Finally, our results showed that LPC regulated gut microbiota by enhancing the percentage of Ligilactobacillus and decreasing Alistipes and Barnesiella. In summary, we found that LP postbiotic was effective to protect broilers against Salmonella infection, possibly through suppressing NLRP3 inflammasome and optimizing gut microbiota. Our study provides the potential of postbiotics on prevention of Salmonella infection in poultry.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Salmonella , Masculino , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Pollos/metabolismo
5.
Poult Sci ; 103(1): 103210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37980737

RESUMEN

Bacillus licheniformis (BL) has been widely regarded as an important growth promoter in recent years. However, its usage in animal industry still needs more foundations. The aim of our study was to study the effects of BL on the growth performance, immunity, oxidative function and intestinal flora of broilers. A total of 760 one-day-old yellow-feathered broilers were randomly divided into 4 groups with 10 replicates per group and 19 broilers per replicate. The broilers in the control group (CON) were fed with basal diet. The treatment groups were supplemented with 250 mg/kg (BL250), 500 mg/kg (BL500) and 750 mg/kg (BL750) BL in the basal diet for 70 d. Results showed that BL groups significantly increased the body weight (BW) and average daily gain (ADG), decreased average daily feed intake (ADFI) and feed conversion ratio (FCR). In addition, the spleen and bursa indexes were higher in the BL groups than that in the CON group at d 70. BL supplementation also markedly increased the levels of immunoglobulins Y (IgY), IgA and anti-inflammatory interleukin 10 (IL-10), reduced the levels of proinflammatory IL-1ß, tumor necrosis factor α (TNF-α) and IL-2 in the serum at 70 d in a concentration-dependent manner. Besides, BL addition significantly increased the levels of series antioxidant enzymes including total antioxidant capacity (T-AOC), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT), and decreased the level of malondialdehyde (MDA) in the serum. Moreover, BL groups showed an obvious increase of isobutyric acid markedly and BL500 group significantly promoted the level of isovaleric acid in cecal contents of broilers. Finally, microbial analysis showed that BL supplementation presented visual separations of microbial composition and increased the relative abundance of p_Proteobacteria, g_Elusimicrobium, and g_Parasutterella comparing with the CON group. Together, this study inferred that dietary BL supplementation improved the growth performance, immune and antioxidant functions, changed the intestinal microflora structure and metabolites of yellow-feathered broilers, which laid a good basis for the application of probiotics in the future.


Asunto(s)
Bacillus licheniformis , Microbioma Gastrointestinal , Animales , Antioxidantes/metabolismo , Pollos , Suplementos Dietéticos/análisis , Dieta/veterinaria , Alimentación Animal/análisis
6.
J Sci Food Agric ; 104(2): 1020-1029, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37718500

RESUMEN

BACKGROUND: This study investigated the effects of dietary plant polysaccharides on growth performance, immune status and intestinal health in broilers. We randomly divided 960 one-day-old Arbor Acres broiler chicks into four groups. The control (CON) group was fed a basal diet, and the remaining groups were fed a basal diet supplemented with 1000 mg kg-1 Ginseng polysaccharide (GPS), Astragalus polysaccharide (APS), or Salvia miltiorrhiza polysaccharide (SMP) for 42 days. RESULTS: Dietary supplementation with SMP significantly increased body weight (BW) at 21 and 42 days of age, average daily gain (ADG) and average daily feed intake (ADFI) during the starter and whole experimental period, decreased the concentrations of interleukin-1 beta (IL-1ß), tumor necrosis factor α (TNF-α) and malondialdehyde (MDA), increased the levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) and catalase (CAT) activity in the serum (P < 0.05). GPS, APS, and SMP supplementation increased serum levels of immunoglobulins, activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC), and cecal concentrations of acetic acid and propionic acid of broilers (P < 0.05). Furthermore, high-throughput sequencing results showed that the relative abundance of Firmicutes was decreased while the relative abundance of Bacteroidota, Alistipes, and Prevotellaceae_NK3B31_group were increased (P < 0.05) in the GPS, APS, and SMP groups compared with the CON group. CONCLUSION: Dietary GPS, APS, and SMP supplementation could improve growth performance, enhance immune function by increasing serum immunoglobulin and regulating cytokines, improve antioxidant function by increasing serum antioxidant enzyme activity, increase volatile fatty acid levels and improve the microbial composition in the cecum of broilers. Dietary SMP supplementation had the optimal effect in this study. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Pollos , Animales , Suplementos Dietéticos , Dieta/veterinaria , Polisacáridos/farmacología , Ciego , Alimentación Animal/análisis
7.
Animals (Basel) ; 13(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38066949

RESUMEN

The beneficial effects of butyric acid in poultry production are well documented, while the relationship between sodium butyrate (SB) and microcapsule sustained-release sodium butyrate (MSSB), especially in yellow broilers, remains poorly investigated. This study was designed to elucidate the function as well as the potential mechanisms of SB and MSSB in enhancing health in yellow broilers. In total, 360 one-day-old yellow broilers were allocated to three treatment groups. The control group (CON) received a basic diet, while the SB group was provided with 1000 mg/kg of sodium butyrate (SB), and the MSSB received microcapsule sustained-release sodium butyrate (MSSB), all over a period of 56 days. Compared to the CON group, the dietary supplementation of both SB and MSSB showed a lower feed:gain ratio (p < 0.01). No significant (p > 0.05) difference in antioxidant capacity was observed between the three groups. We observed significantly higher levels (p < 0.05) of immunoglobulins and a reduction in concentrations in both the SB and MSSB groups compared to the CON group. Furthermore, both SB and MSSB induced alterations in the diversity, structure, and function of gut microbiota. MSSB demonstrated even more pronounced beneficial effects than SB, particularly in regard to the serum IgA level (p = 0.05), cecal isovalerate concentration (p < 0.05), and villus height (p < 0.01). The sequencing of the gut microbiota revealed that MSSB led to a significant increase in the relative abundance of Clostridia UCG-014, Bacilli RF39, and Oscillospiraceae UCG-005. Predictions of bacterial function indicated changes in KEGG pathways, including an enrichment of tryptophan metabolism (ko00380), and a reduction in fructose and mannose metabolism (ko00051), chloroalkane and chloroalkene degradation (ko00625), and naphthalene degradation (ko00626) in yellow broilers fed with MSSB. Among these, the mediation analysis revealed a causal effect between the Clostridia UCG-014 in the gut and serum IgA, with tryptophan metabolism being a key mediator in this relationship. Our results suggest that dietary MSSB can improve the growth performance, immunity, and gut microbiota of yellow broilers. MSSB increased the abundance of Clostridia UCG-014 and activated the tryptophan metabolism pathway (ko00380), contributing to IgA levels in yellow broilers through this mechanism.

8.
Animals (Basel) ; 13(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38136821

RESUMEN

Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1ß, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1ß level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.

9.
Animals (Basel) ; 13(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893938

RESUMEN

Our study aimed to explore the effects of postbiotics on protecting against Salmonella infection in mice and clarify the underlying mechanisms. Eighty 5-week-old C57BL/6 mice were gavaged daily with Lactiplantibacillus plantarum (LP)-derived postbiotics (heat-killed bacteria, LPBinactive; culture supernatant, LPC) or the active bacteria (LPBactive), and gavaged with Salmonella enterica Typhimurium (ST). The Turbidimetry test and agar diffusion assay indicated that LPC directly inhibited Salmonella growth. Real-time PCR and biofilm inhibition assay showed that LPC had a strong ability in suppressing Salmonella pathogenicity by reducing virulence genes (SopE, SopB, InvA, InvF, SipB, HilA, SipA and SopD2), pili genes (FilF, SefA, LpfA, FimF), flagellum genes (FlhD, FliC, FliD) and biofilm formation. LP postbiotics were more effective than LP on attenuating ST-induced intestinal damage in mice, as indicated by increasing villus/crypt ratio and increasing the expression levels of tight junction proteins (Occludin and Claudin-1). Elisa assay showed that LP postbiotics significantly reduced ST-induced inflammation by regulating the levels of inflammatory cytokines (the increased IL-4 and IL-10 and the decreased TNF-α) in serum and ileum (p < 0.05). Furthermore, LP postbiotics inhibited the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome by decreasing the protein expression of NLRP3 and Caspase-1, and the gene expression of Caspase-1, IL-1ß and IL-18. Meanwhile, both LPC and LPB observably activated autophagy under ST infection, as indicated by the up-regulated expression of LC3 and Beclin1 and the downregulated p62 level (p < 0.05). Finally, we found that LP postbiotics could trigger an AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy. In summary, Lactiplantibacillus plantarum-derived postbiotics alleviated Salmonella infection via modulating bacterial pathogenicity, autophagy and NLRP3 inflammasome in mice. Our results confirmed the effectiveness of postbiotics agents in the control of Salmonella infection.

10.
J Sci Food Agric ; 103(14): 6958-6965, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37309567

RESUMEN

BACKGROUND: Bacillus licheniformis is a gram-positive bacterium that has strong environmental adaptability and can improve the growth performance, immunity, and antioxidant function of broilers. The current study aimed to elucidate the protective capability of B. licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis (NE) induced by Clostridium perfringens (CP). RESULTS: The results showed that B. licheniformis enhanced the final body weight in broilers compared with that of broilers in the CP group after the stress of infection (P < 0.05). Bacillus licheniformis reversed the decreased levels of serum and jejunum mucosa immunoglobulins and anti-inflammatory cytokines, reduced the values of villus height and the ratio of villus height to crypt depth, and mitigated the increased levels of serum d-lactic acid and diamine oxidase in CP-challenged broilers (P < 0.05). Moreover, B. licheniformis modulated the expression levels of genes involved in the TLR4/NF-κB signalling pathway, the NLRP3 inflammasome activation pathway, and the sirt 1/Parkin signalling pathway in CP-challenged broilers. Compared with the CP challenge group, the B. licheniformis-treated group exhibited reduced abundance values of Shuttleworthia and Alistipes and enhanced abundance values of Parabacteroides in the caecal contents (P < 0.05). CONCLUSION: Bacillus licheniformis improved the final body weight and alleviated the inflammatory response and intestinal barrier function damage in birds with NE induced by CP by maintaining intestinal physiological function, enhancing immunity, regulating inflammatory cytokine secretion, modulating the mitophagy response, and increasing the abundance of beneficial intestinal flora. © 2023 Society of Chemical Industry.


Asunto(s)
Bacillus licheniformis , Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Animales , Clostridium perfringens/fisiología , Pollos , Bacillus licheniformis/genética , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Enteritis/prevención & control , Enteritis/veterinaria , Enteritis/microbiología , Peso Corporal , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/prevención & control
11.
Animals (Basel) ; 13(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37174484

RESUMEN

The purpose of this study is to investigate the effects of Yucca saponin (YSa), Yucca schidigera (YS), and Quillaja Saponaria (QS) on growth performance, nitrogen metabolism, immune ability, antioxidant capability, and intestinal flora of yellow-feather broilers. This study randomly divided a total of 480 1-day yellow-feather broilers into 4 treatment groups. Factors in the 4 groups included CON group (basic diet), YSa group (basic diet mixed with 500 mg/kg YSa), YS group (basic diet mixed with 500 mg/kg YS), and QS group (basic diet mixed with 500 mg/kg QS). Throughout the 56-day study period, YSa, YS, and QS groups had higher average daily gain in broilers than the CON group (p < 0.01). The YS group had a lower feed gain ratio (F: G) in broilers than the CON group (p < 0.05). YSa, YS, and QS showed increased serum immunoglobin A (IgA), immunoglobin Y (IgY), immunoglobin M (IgM), and total antioxidant capacity (T-AOC) levels; enhanced acetic acid, butyric acid, and valeric acid levels of cecal content; and reduced contents of ammonia nitrogen, urea nitrogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) in serum in broilers (p < 0.05). The relative abundance of Lachnoclostridium in the QS group was decreased compared with that in the CON group (p < 0.05). Higher IgA and IgY sera contents were observed in the YS group compared to the YSa and QS groups (p < 0.05). In contrast with the QS group, the serum IL-6 concentration of the YS group was reduced (p < 0.05). In conclusion, YSa, YS, and QS promoted growth performance, nitrogen metabolism, immunity, antioxidant capability, and intestinal flora in broilers. Through the comparison of YSa, YS, and QS, it was found that YS is more suitable as a feed additive to ameliorate the healthy growth of broilers.

12.
J Anim Sci Biotechnol ; 14(1): 52, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024991

RESUMEN

BACKGROUND: Dietary bamboo leaf flavonoids (BLFs) are rarely used in poultry production, and it is unknown whether they influence meat texture profile, perceived color, or microstructure. RESULTS: A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg, 50 mg BLFs/kg, or 250 mg BLFs/kg or without additions. Data showed that the dietary BLFs significantly (P < 0.05) changed growth performance and the texture profile. In particular, BLFs increased birds' average daily gain and average daily feed intake, decreased the feed:gain ratio and mortality rate, improved elasticity of breast meat, enhanced the gumminess of breast and leg meat, and decreased the hardness of breast meat. Moreover, a significant (P < 0.05) increase in redness (a*) and chroma (c*) of breast meat and c* and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers. In addition, BLFs supplementation significantly decreased (P < 0.05) the ß-sheet ratio and serum malondialdehyde and increased the ß-turn ratio of protein secondary structure, superoxide dismutase, and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum. Based on the analysis of untargeted metabolome, BLFs treatment considerably altered 14 metabolites of the breast meat, including flavonoids, amino acids, and organic acids, as well as phenolic and aromatic compounds. CONCLUSIONS: Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites.

13.
Front Immunol ; 14: 1140564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033995

RESUMEN

Bacillus licheniformis (B. licheniformis) is a well-accepted probiotic that has many benefits on both humans and animals. This study explored the effects of B. licheniformis on growth performance, intestinal mucosal barrier functions, immunity as well as serum metabolome in the weaned piglets exposed to lipopolysaccharide (LPS). One hundred and twenty piglets weaned at four weeks of age were separated into two groups that received a basal diet (the control group, CON), and a basal diet complemented with B. licheniformis (500 mg/kg, the BL group, BL). Twenty-four piglets were chosen from the above two groups and 12 piglets were injected with LPS intraperitoneally at a concentration of 100 µg/kg and the others were injected with sterile saline solution of the same volume. All the piglets were sacrificed 4 h after LPS challenge. Results showed that B. licheniformis enhanced the ADG and final body weight and lowered the F/G and diarrhea rate. Pre-treatment with B. licheniformis markedly attenuated intestinal mucosal damage induced by LPS challenge. Supplementation with B. licheniformis strengthened immune function and suppressed inflammatory response by elevating the concentrations of serum immunoglobulin (Ig) A and jejunum mucosal IgA and IgG and decreasing serum IL-6 and jejunum mucosal IL-1ß. In addition, B. licheniformis pretreatment prevented LPS-induced intestinal injury by regulating the NLRP3 inflammasome. Furthermore, pretreatment with B. licheniformis tended to reverse the reduction of acetate and propionic acids in the colonic contents that occurred due to LPS stress. B. licheniformis markedly modulated the metabolites of saccharopine and allantoin from lysine and purine metabolic pathways, respectively. Overall, these data emphasize the potentiality of B. licheniformis as a dietary supplement to overcome the challenge of bacterial LPS in the animal and to enhance the food safety.


Asunto(s)
Bacillus licheniformis , Lipopolisacáridos , Humanos , Animales , Porcinos , Lipopolisacáridos/farmacología , Suplementos Dietéticos , Dieta , Destete
14.
J Cell Physiol ; 238(6): 1336-1353, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37052047

RESUMEN

We previously found that Lactobacillus plantarum (LP)-derived postbiotics protected animals against Salmonella infection, but the molecular mechanism remains obscure. This study clarified the mechanisms from the perspective of autophagy. Intestinal porcine epithelial cells (IPEC-J2) were pretreated with LP-derived postbiotics (the culture supernatant, LPC; or heat-killed bacteria, LPB), and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics markedly triggered autophagy under ST infection, as indicated by the increased LC3 and Beclin1 and the decreased p62 levels. Meanwhile, LP postbiotics (particularly LPC) exhibited a strong capacity of inhibiting ST adhesion, invasion and replication. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) led to a significant decrease of autophagy and the aggravated infection, indicating the importance of autophagy in LP postbiotics-mediated Salmonella elimination. LP postbiotics (especially LPB) significantly suppressed ST-induced inflammation by modulating inflammatory cytokines (the increased interleukin (IL)-4 and IL-10, and decreased tumor necrosis factor-α (TNF), IL-1ß, IL-6 and IL-18). Furthermore, LP postbiotics inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation, as evidenced by the decreased levels of NLRP3, Caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Deficits in autophagy resulted in an increase of inflammatory response and inflammasome activation. Finally, we found that both LPC and LPB triggered AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy, and this was further confirmed by AMPK RNA interference. The intracellular infection and NLRP3 inflammasome were aggravated after AMPK knockdown. In summary, LP postbiotics trigger AMPK-mediated autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome in IPEC-J2 cells. Our findings highlight the effectiveness of postbiotics, and provide a new strategy for preventing Salmonella infection.


Asunto(s)
Lactobacillus plantarum , Infecciones por Salmonella , Animales , Porcinos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas Activadas por AMP , Lactobacillus plantarum/metabolismo , Proteínas NLR , Autofagia/genética , Interleucina-1beta/metabolismo
15.
Animals (Basel) ; 13(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36670755

RESUMEN

The principal purpose of this research was to study the effects of glycerol monolaurate (GML) on the production performance; egg quality; health state of the oviduct, ovary and ileum; and gut microbiota of laying hens in the later stage. The laying hens were randomly assigned to two groups: a control group and an experiment group, for which 1000 mg/kg of GML was added to a control diet. The results showed that GML increased the laying rate, average egg weight, albumen height, yolk color and Haugh unit and decreased the feed conversion ratio and defective eggs (p < 0.05). GML increased the intestinal villi height and the ratio of villus height to crypt depth (p < 0.05). Moreover, GML improved the contents of cytokines in the oviduct, ovary and ileum mucosa; ameliorated the expression of TLR2, TLR4, MyD88, IL-4, IL-1ß and TNF-α; and increased the expression of Occludin and Muc-2 in the ileal mucosa. The supplementation of GML increased the volatile fatty acids in the cecal contents, such as acetic acid and propionic acid, and up-regulated Bacteroides (p < 0.01) and Alistipes (p < 0.05) richness in the cecal contents. In summary, GML improved production performance, egg quality and immunity; ameliorated the health status of the oviduct, ovary and ileum; enhanced the intestinal barrier function; improved the content of intestinal volatile fatty acids; and regulated the abundance of cecal flora.

16.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 173-181, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820921

RESUMEN

Chitosan nanoparticles (CNP), widely applied as oral drug/gene/vaccine carrier, were found to have anti-inflammatory properties. In this study, the effects of CNP on lipopolysaccharide (LPS)-induced intestinal damage in weaned piglets and the related mechanisms were investigated. Twenty-four weaned piglets (Duroc × Landrace × Yorkshire, 21 ± 2 day of age, initial mass: 8.58 ± 0.59 kg) were randomly assigned into four groups: control, LPS, CNP and CNP + LPS. The control and LPS groups were fed a corn-soybean meal-based control diet, whereas the CNP and CNP + LPS groups were fed a control diet supplemented with 400 mg/kg CNP. After 28 days of feeding, piglets in LPS and CNP + LPS groups were injected with LPS (100 µg/kg); meanwhile, the piglets in control and CNP groups were injected with sterile saline. After 4 h from the LPS challenge, pigs were sacrificed to collect the intestinal samples for analysis. The results showed that CNP could attenuate the intestinal damages and inflammatory response stimulated by LPS treatment. LPS induced dramatically higher levels of CD177+ neutrophils invasion in jejunum mucosa (p < 0.01), which accompanied by increased secretion of marks of inflammation (p < 0.01) compared with the control, whereas CNP administration obviously inhibited LPS-induced CD177+ neutrophils invasion (p < 0.01) and secretion of marks of inflammation, such as interleukin-8 (p < 0.05), intercellular adhesion molecule-1 (p < 0.05) secretion in jejunum mucosa compared with LPS group. Moreover, CNP was shown to inhibit IκB-α degradation in cytoplasm, which resulted in reduced nuclear translocation of NF-κB p65 in LPS-challenged piglets. These findings suggest that CNP attenuates intestinal damage and inflammatory responses in LPS-challenged weaned piglets by impairing the NF-κB signalling pathway.


Asunto(s)
Quitosano , Nanopartículas , Enfermedades de los Porcinos , Animales , Porcinos , Lipopolisacáridos/toxicidad , Quitosano/farmacología , FN-kappa B , Mucosa Intestinal , Suplementos Dietéticos , Inflamación/inducido químicamente , Inflamación/prevención & control , Inflamación/veterinaria , Enfermedades de los Porcinos/inducido químicamente , Enfermedades de los Porcinos/prevención & control
17.
Animals (Basel) ; 14(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38200877

RESUMEN

High dose of zinc oxide (ZnO) could improve growth performance and alleviate disease status, whereas it caused serious environmental pollution and bacterial resistance. This study was to investigate whether low doses of sodium alginate-coated nano zinc oxide (saZnO), a new type of zinc resource, could serve as a potential alternative to pharmacological doses of traditional ZnO in weaned piglets. A total of 144 crossbred piglets were randomly allocated into three groups, including a basal diet without the addition of Zn (CON), a basal diet with 1600 mg Zn/kg from traditional ZnO (ZnO), and a basal diet with 500 mg Zn/kg from saZnO (saZnO). The experiment lasted for 28 days. The results showed that supplementing with ZnO and saZnO for 14 and 28 days significantly improved body weight (BW) and average daily gain (ADG) (p < 0.01) and markedly reduced the feed intake-to-gain ratio (F/G) (p < 0.05) and diarrhea rate. In addition, dietary ZnO and saZnO significantly increased the activities of the total antioxidant capacity (T-AOC) and alkaline phosphatase (ALP) (p < 0.01). Supplementing with saZnO also promoted the levels of superoxide dismutase (SOD), IgM and copper- and zinc-containing superoxide dismutase (Cu/Zn-SOD) in serum (p < 0.05), whereas a ZnO addition decreased the concentration of malondialdehyde (MDA) (p < 0.05), indicating the beneficial effect of Zn on antioxidant and immune functions. Piglets fed the ZnO diet showed higher serum Zn accumulations than those fed the CON and saZnO diets at d 28 (p < 0.01), and supplementing with ZnO and saZnO markedly contributed to Zn excretion in feces, especially in the ZnO diet (p < 0.01). Additionally, piglets fed the saZnO diet had greater valeric acid concentrations (p < 0.05) in their feces, while other short chain fatty acids (SCFAs) were not affected by different treatments (p > 0.05). Microbial alpha diversity was reduced in the saZnO group compared with the CON group (p < 0.05), while an obvious separation of microbial composition, the marker of beta diversity, was shown among the three groups (p < 0.05). At the genus level, six genera, including Clostridium_sensu_stricto_1, Terrisporobacter, f_Muribaculaceae, Subdoligranulum and Intestinibacter, were pronouncedly increased in the ZnO and saZnO groups (p < 0.05); another nine species were dramatically downregulated, such as f_Lachnospiraceae, f_Prevotellaceae, f_Butyricicoccaceae and f_Ruminococcaceae (p < 0.05). Finally, a functional analysis indicated that altered microbes significantly changed the "Metabolism" pathway (p < 0.05). These findings suggested that saZnO could act as a feasible substitute for ZnO to reduce Zn emission and enhance growth performance, antioxidant and immune functions, and to adjust the structure of gut microbiota in piglets.

18.
Front Nutr ; 9: 946096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967771

RESUMEN

Postbiotics are the inactive bacteria and/or metabolites of beneficial microbes which have been recently found to be as effective as their live probiotic. This study aimed to evaluate the benefits of Lactobacillus plantarum (LP)-derived postbiotics on ameliorating Salmonella-induced neurological dysfunctions. Mice were pretreated with LP postbiotics (heat-killed bacteria or the metabolites) or active bacteria, and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics, particularly the metabolites, effectively prevented ST infection in mice, as evidenced by the inhibited weight loss, bacterial translocation, and tissue damages. The LP postbiotics markedly suppressed brain injuries and neuroinflammation (the decreased interleukin (IL)-1ß and IL-6, and the increased IL-4 and IL-10). Behavior tests indicated that LP postbiotics, especially the metabolites, protected mice from ST-induced anxiety and depressive-like behaviors and cognitive impairment. A significant modulation of neuroactive molecules (5-hydroxytryptamine, gamma-aminobutyric acid, brain-derived neurotrophic factor, dopamine, acetylcholine, and neuropeptide Y) was also found by LP postbiotic pretreatment. Microbiome analysis revealed that LP postbiotics optimized the cecal microbial composition by increasing Helicobacter, Lactobacillus and Dubosiella, and decreasing Mucispirillum, norank_f_Oscillospiraceae, and Eubacterium_siraeum_group. Moreover, LP postbiotics inhibited the reduction of short-chain fatty acids caused by ST infection. Pearson's correlation assays further confirmed the strong relationship of LP postbiotics-mediated benefits and gut microbiota. This study highlights the effectiveness of postbiotics and provide a promising strategy for preventing infection-induced brain disorders by targeting gut-brain axis.

19.
Animals (Basel) ; 12(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35804509

RESUMEN

Bacillus licheniformis (B. licheniformis) is a safe probiotic that can promote animal growth and inhibit pathogenic bacteria. This study aimed to assess the effects of B. licheniformis, one green feed additive, on growth performance, diarrhea incidence, immune function, fecal volatile fatty acids, and microflora structure in weaned piglets. Weaned piglets (n = 180) were randomly divided into three treatment groups and fed a basal diet and a basal diet supplemented with 500 mg B. licheniformis per kg and 1000 mg B. licheniformis per kg, respectively. The dietary 500 mg/kg B. licheniformis inclusion improved the average daily gain, reduced diarrhea incidence, and strengthened antioxidant capacity. Piglets supplemented with B. licheniformis presented increased serum immunoglobulins (IgA, IgM) compared to the CON group. Meanwhile, the expression of anti-inflammation factors was increased, and the levels of pro-inflammation factors were reduced after B. licheniformis administration. Moreover, the levels of volatile fatty acids, including acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid, in the BL500 and BL1000 groups were increased compared with the CON group, and the concentration of valeric acid was higher in the BL500 group. Furthermore, piglets in the 500 mg/kg B. licheniformis addition group significantly altered fecal microbiota by increasing Clostridium_sensu_stricto_1 and Oscillospira. In conclusion, dietary B. licheniformis relieved diarrhea, enhanced antioxidant capacity, immunity function, and fecal microflora structure in weaned pigs.

20.
Antibiotics (Basel) ; 11(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740224

RESUMEN

The growth performance of livestock and poultry has always been a concern. However, much work is currently focused on the selection of breeds and diets to improve the growth performance of livestock and poultry. Furthermore, numerous studies have shown that the gut microbiota is closely related to the growth performance of livestock and poultry. At present, there are many reports on the impact of antibiotic intervention on the structure of gut microbiota. However, there are few reports on the influence of antibiotic intervention on the structure of intestinal microbes and the effect of this change on growth performance. Bacitracin methylene disalicylate (BMD) intervention changes the microbial structure in the caecum of broilers at different growth stages, as shown in this study. To further reveal the potential relationship between gut microbiota changes and growth performance caused by BMD intervention, correlation analysis was used for analysis. A total of 144 1-day-old male Cobb-Vantress were randomly divided into two groups. In addition to antibiotic-free starter mash diets, starter mash diets supplemented with 55 mg/kg BMD were also used, called the CON group and the BMD group, and lasted 28 days. (1) These study results showed that adding BMD to the diet had a significant effect on the growth performance of broilers. Compared with the CON group, the body weight of the BMD group increased significantly by 11.08% and 20.13% on Days 14 and 28, respectively (p < 0.05). Similarly, at 0−14, 14−28 and 0−28 days of age, the average daily gain of the BMD group increased significantly by 12.28%, 24.49% and 20.80%, respectively. The average daily feed intake of the BMD group increased significantly by 18.28%, 27.39% and 24.97% (p < 0.05). In addition, at 0−28 days of age, the feed conversion ratio increased significantly by 5.5% (p < 0.05). (2) Alpha diversity results show that BMD intervention has an impact on gut microbiota at different growth stages. (3) The early intervention significantly affected 7 taxa by Day 14, followed by 22 taxa by Day 28, which is similar to the results in the caecal flora. Compared with the CON group, the Christensenellaceae R-7 group had the highest linear discriminant analysis (LDA) score on Day 28. In addition, Pearson's correlation analysis showed that the Lachnospiraceae FCS020 group was significantly negatively correlated with growth performance. In general, these results indicate that dietary supplementation of BMD has an effect on broiler gut microbiota structure and growth performance. However, changes in growth performance may be caused by the gut microbiota structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...